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The effects of graph operations on the synchronization of coupled dynamical systems are studied. The
operations range from addition or deletion of links to various ways of combining networks and generating
larger networks from simpler ones. Methods from graph theory are used to calculate or estimate the eigenval-
ues of the Laplacian operator, which determine the synchronizability of continuous or discrete time dynamics
evolving on the network. Results are applied to explain numerical observations on random, scale-free, and
small-world networks. An interesting feature is that, when two networks are combined by adding links between
them, the synchronizability of the resulting network may worsen as the synchronizability of the individual
networks is improved. Similarly, adding links to a network may worsen its synchronizability, although it
decreases the average distance in the graph.
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I. INTRODUCTION

The synchronization of coupled systems is an active field
of research with applications in many areas of the physical
and biological sciences �see Ref. �1� for a general introduc-
tion�. Synchronization is a wide-ranging phenomenon, which
can be observed in systems ranging from pulse-coupled neu-
rons �2� to chaotic oscillators �3�, and even in the presence of
delayed information transmission �4�. In some cases it is a
desired phenomenon, such as when several lasers are
coupled to obtain maximum power output, while in other
cases it represents a pathology, such as the synchronous neu-
ral activity during epileptic seizures. The connection struc-
ture of a network plays an important effect on its synchroni-
zation. For diffusively coupled identical systems, the effects
of the network topology can be expressed in terms of the
spectrum of a diffusion �or Laplacian� operator �e.g., Refs.
�5–9��. The spectrum characterizes synchronization for a
given network structure; however, it usually gives little in-
sight into the effects of changes in the structure. It is often
difficult to say how some structural change might affect syn-
chronization without calculating the eigenvalues afresh for
the network.

In this paper we study the effects of changes in the net-
work structure on the synchronization of coupled dynamical
systems. The operations we consider include adding or re-
moving links from the network, combining two or more net-
works into one, and generating large networks from simpler
ones. Using ideas from graph theory, we deduce the spec-
trum of the resulting network from the spectrum of the origi-
nal, without resorting to lengthy calculations. For certain op-
erations the exact values of the eigenvalues can be obtained,
while for others useful estimates are derived. Our results
allow a systematic study of the synchronizability of whole
classes of networks, and offer additional insight into the re-
lation between network topology and synchronization.

The synchronization of coupled chaotic systems depends
typically on a number of factors, including the strength of
the coupling, the connection topology, and the dynamical
characteristics of the individual units, quantified by, e.g., the
maximal Lyapunov exponent. To introduce some notation,
consider a network of identical systems, indexed by
i=1,… ,n, and governed by the differential equations

ẋi�t� = f„xi�t�… − ��
j=1

n

Lijxj�t� . �1�

Here ��R denotes the coupling strength. The matrix of cou-
pling coefficients L= �Lij� is symmetric, has the diagonal el-
ements Lii equal to the number of connections to unit i, and
the off-diagonal elements Lij are −1 if the ith and jth units
are coupled and zero otherwise. A standard result is that the
eigenvalues of L are real and non-negative, the smallest one
is equal to zero, and is a simple eigenvalue if the network is
connected. We assume a connected network and order the
eigenvalues as 0=�1��2� ¯ ��n. For convenience we
also use the notation �min and �max for the smallest and larg-
est nonzero eigenvalues, �2 and �n, respectively. The system
�1� is said to synchronize if �xi�t�−xj�t��→0 as t→� for all
i , j, starting from some open set of initial conditions. Syn-
chronization may occur even when the individual dynamics
are chaotic, and is related to the eigenvalues of L. For the
system �1�, the relevant condition is of the form �10�

�min � � , �2�

where � is a quantity that depends on � and f �more pre-
cisely, on the maximum Lyapunov exponent of f� but not on
the connection topology. In another commonly studied sys-
tem, namely the so-called coupled map lattice

xi�t + 1� = f„xi�t�… − ��
j=1

n

Lij f„xj�t�… , �3�

the synchronization condition takes the form �9�
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�min

�max
� � . �4�

We remark that �4� can also be the relevant condition for the
synchronization of continuous-time systems if a more gen-
eral coupling function is used than the one appearing in �1�.
Thus, synchronization depends on the eigenvalues �min and
�max of L, a larger value of �min or a smaller value of �max
indicating that synchronization can be achieved for a larger
set of parameter values, e.g., for larger Lyapunov exponents
or a wider range of coupling strengths.

The eigenvalues �i depend only on the connection struc-
ture and so can be introduced in a graph-theoretic way.
Hence, consider the graph G underlying the coupled system.
The vertices of G correspond to the dynamical units, with
edges designating the interaction between them, which is as-
sumed to be bidirectional, so G is an undirected graph. All
graphs considered in this paper are assumed to be connected
and simple �i.e., without loops or multiple edges�. To avoid
some trivial cases, we also assume throughout that they have
at least two vertices. We write V�G� and E�G�, respectively,
for the vertex and edge sets of a given graph G. Conversely,
we let G= �E ,V� denote the graph formed from given edge
and vertex sets. The notation �V�G�� denotes the number of
vertices of G. The connection structure of G is described by
its adjacency matrix A= �aij� with elements aij =1 if the ith
and jth vertices are connected by an edge, and zero other-
wise. Let D be the diagonal matrix of vertex degrees, i.e., its
ith diagonal element is the number of edges incident on the
ith vertex. The coupling matrix of the dynamical system is
then the Laplacian L=D−A of its underlying graph. �A
simple example is given in the Appendix.� We also write
L�G� and �i�G� for the Laplacian and its eigenvalues when
we wish to emphasize the dependence on the particular graph
G. The smallest positive eigenvalue �min is called the alge-
braic connectivity of the graph �11� or the spectral gap of the
Laplacian. By the condition �2�, it also provides a measure
by which various network architectures can be ranked with
respect to the ease of synchronization of continuous-time
systems �1� defined on them. Hence we can say that the
graph G1 is a better or poorer synchronizer than G2 if
�min�G1� is larger or smaller than �min�G2�, respectively.
Similarly, network architectures can also be compared with
respect to the synchronizability condition �4� using the quan-
tity �min/�max.

This correspondence between topology and dynamics al-
lows the use of mathematical tools from graph theory for the
investigation of synchronization, which we utilize in the fol-
lowing sections. Section II considers the Cartesian product,
the join, and the coalescence operations, which can be
viewed as specific ways of combining networks, as well as
the more general operations of adding and removing links
within a network or between two networks. For each opera-
tion, we determine the synchronizability of the resulting
graph by calculating or estimating the quantities �min and
�min/�max from the eigenvalues of the original graph. Ana-
lytical predictions are numerically confirmed in Sec. III on
random, scale-free, and small-world networks. In addition,

several interesting features observed in the calculations are
explained using the theory of Sec. II.

II. GRAPH OPERATIONS

In this section we consider several graph operations and
their effects on the eigenvalues of the Laplacian. We start by
recalling some elementary estimates on the eigenvalues.
Since the diagonal elements of the Laplacian L are simply
the vertex degrees di, it follows that

�
i=1

n

�i = �
i=1

n

di. �5�

Using the fact that �1=0, we have �i=1
n �i� �n−1��max. In

other words,

�max �
1

n − 1�
i=1

n

di � davg, �6�

where davg denotes the average degree.
Another useful estimate for a graph on n vertices is �12�

�i � n for all i . �7�

A. Cartesian product

The Cartesian product is one of the basic operations on
graphs, through which some common graphs can be con-
structed from simpler ones. For instance, regular grids,
cubes, and their counterparts in higher dimensions are ob-
tained from the Cartesian product of paths �linear chains� Pk.
To give a precise definition, let G= �V ,E� and H= �W ,F� be
two nonempty graphs. The Cartesian product G�H is a
graph with vertex set V	W, and �x1 ,x2��y1 ,y2� is an edge in
E�G�H� if and only if either x2=y2 and x1y1�E�G� or if
x1=y1 and x2y2�E�H�. One may view G�H as the graph
obtained from G by replacing each of its vertices with a copy
of H and each of its edges with �V�H�� edges joining corre-
sponding vertices of H in the two copies. For instance, the
product of two paths Pn and Pm yields an n	m rectangular
grid. Some examples are given in Fig. 1.

The Cartesian product is a commutative, associative bi-
nary operation on graphs, see e.g., Ref. �13�. The eigenvalues
for the product can be calculated from the eigenvalues for the
factor graphs.

Proposition 1: The eigenvalues of the Laplacian for the

FIG. 1. The Cartesian product, C3�P2 �upper row� and P3�P4

�lower row�.
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Cartesian product G�H satisfy

�min�G�H� = min��min�G�,�min�H�� ,

�max�G�H� = �max�G� + �max�H� ,

�min�G�H�
�max�G�H�

� min	 �min�G�
�max�G�

,
�min�H�
�max�H�
 .

Proof: Suppose that G and H have s and r vertices, re-
spectively. A result from graph theory implies that the eigen-
values of L�G�H� are given by all possible sums �i�G�
+� j�H�, 1� i�r and 1� j�s �see, for example, Ref. �13��.
Recalling that �1 is always zero, we have �min�G�H�
=min��min�G� ,�min�H��. It also follows that �max�G�H�
=�max�G�+�max�H�. Finally, assume without loss of general-
ity that �min�G���min�H�. Then

�max�G�H�
�min�G�H�

=
�max�G� + �max�H�

min��min�G�,�min�H��
=

�max�G�
�min�G�

+
�max�H�
�min�G�

�
�max�G�
�min�G�

+
�max�H�
�min�H�

� max	�max�G�
�min�G�

,
�max�H�
�min�H� 
 ,

which completes the proof. �
Thus, the product G�H cannot be a better synchronizer

than its factors G and H, and in fact, with respect to the
condition �4� it is a strictly poorer synchronizer than both G
and H. Proposition 1 allows us to conclude simply by visual
inspection that the graphs on the left-hand side of the equal-
ity signs in Fig. 1 are better synchronizers than those on the
right-hand side. In particular, one-dimensional chains are
better synchronizers than two-dimensional grids, which in
turn are better than three-dimensional lattices, and so on.

Let us look more closely at the behavior of �min under the
Cartesian product. The product G�P2 is two copies of G
with edges between the corresponding vertices in each copy.
The eigenvalues of L�P2� are 0 and 2, i.e., �min�P2�
=�max�P2�=2. Proposition 1 implies that

�min�G�P2� = 	�min�G� if �min�G� � 2,

2 if �min�G� � 2.

 �8�

In other words, �min of the product graph saturates if �min�G�
increases beyond 2. The more general product G�H is
formed from several copies of G where corresponding verti-
ces in each copy are connected according to the structure
given by H, and �min�G�H� is given by the right-hand side
of �8� with two replaced by �min�H�. One can fix H �and thus
the connection structure of the copies of G�, and study the
resulting synchronizability for different choices of G. If
�min�G� is increased �for instance, by adding edges within G,
see Sec. II D�, we see from the above Proposition that
�min�G�H� will increase as long as �min�G���min�H�, but
not beyond the value �min�H�. Thus the structure of H sets an
upper bound on the synchronizability of G�H, and this
bound is quantified by �min�H�. Since adding edges to G will
not improve synchronization of the product graph beyond

this limit, one might try adding links across the copies of G
instead. For instance, instead of the product G�P2 where
each vertex of G is coupled to its twin in the second copy,
one can link each vertex of G to every vertex in the second
copy of G. This is the join operation, which is the topic of
Sec. II B. There it will be seen that �min can indeed be
greatly increased by this procedure.

The situation is more interesting with respect to the ratio
�min/�max. We show in Sec. III that, for fixed H ,�min/�max
can actually decrease for G�H while �min�G� /�max�G� in-
creases. In other words, the better G synchronizes, the worse
will the product G�H. We will show in Sec. II E that this
phenomenon is not peculiar to the Cartesian product, and can
also occur under quite general connection of networks.

B. Join

Let G1= �V1 ,E1� and G2= �V2 ,E2� be graphs on disjoint
sets of n and m vertices, respectively. Their disjoint union
G1+G2 is the graph G1+G2= �V1�V2 ,E1�E2�, and their
join G1�G2 is the graph on r=n+m vertices obtained from
G1+G2 by inserting edges from each vertex of G1 to each
vertex of G2. �See Fig. 2�

Proposition 2: Let G and H be graphs on n and m verti-
ces, respectively. Then the eigenvalues of the Laplacian for
the join G�H satisfy

�min�G � H� = min��min�G� + m,�min�H� + n� �9�

��min�G� + �min�H� �10�

and

�max�G � H� = m + n . �11�

If G and H have the same number of vertices, then

�min�G � H�
�max�G � H�

�
1

2
. �12�

Proof: The eigenvalues of L�G�H� are given by 0,n
+m ,m+�i�G� ,2� i�n; and n+� j�H� ,2� j�m �13�, from
which �9� and �11� follow. By �7�, m��min�H� and n
��min�G�, which imply �10�. It follows that when n=m,

�min�G � H�
�max�G � H�

=
n + min��min�G�,�min�H��

2n
�

1

2
.

�

FIG. 2. The join operation, P1�C4 �upper row� and P2� P3

�lower row�.
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Hence, �min�G�H� is always larger than both �min�G� and
�min�H�, and therefore also larger than �min�G�H�, by
Proposition 1. The situation is not so clear cut for the ratio
�min/�max. For example, for the special case G�G ,�min/�max
is usually higher for the join than for the original graph G,
but it can also be smaller. In order to have
�min�G�G� /�max�G�G���min�G� /�max�G�, a necessary
condition from �12� is that

�min�G�
�max�G�

�
1

2
, �13�

that is, G should already be a good synchronizer. Figure 4 in
Sec. III gives an example for the case when �13� is satisfied
and G�G is a slightly poorer synchronizer than G. Never-
theless, by �12� the join of two graphs of comparable sizes
will yield a good synchronizer, and for specific graph types it
can be proved that the result will be strictly better than the
individual graphs. We give an example for the case of trees.

Corollary 1: Let T and S be two trees each having n
vertices, then

�min�T � S�
�max�T � S�

� max	 �min�T�
�max�T�

,
�min�S�
�max�S�
 .

Proof: A tree T with n vertices has n−1 edges, so the sum
of its vertex degrees is 2�n−1�, and by �6� �max�T��2. Fur-
thermore, it is a known fact that �min�T��1 for trees �11�.
Thus, �min�T� /�max�T��1/2. The corollary then follows by
�12�. �

C. Coalescence

A coalescence of G1 and G2 is any graph obtained from
the disjoint union G1+G2 by identifying a vertex of G1 with
a vertex of G2, i.e., merging one vertex from each graph into
a single vertex. Unlike the Cartesian product, the coalescence
generally does not yield a unique graph; see Fig. 3. We de-
note by G1�G2 any coalescence of G1 and G2. We show that
G�H cannot be a better synchronizer than G or H. Note that
the result holds for all possible coalescences of the pair G ,H,
and thus applies to a large number of graph types.

Proposition 3: For any coalescence G�H of G and H,

�min�G � H� � min��min�G�,�min�H�� ,

�max�G � H� � max��max�G�,�max�H�� ,

�min�G � H�
�max�G � H�

� min	 �min�G�
�max�G�

,
�min�H�
�max�H�
 .

Proof: Suppose that b= �b1 ,… ,bp� and c= �c1 ,… ,cq� are
sequences of non-negative real numbers arranged in nonin-
creasing order. We say that b majorizes c if �i=1

k bi
��i=1

k ci ,1�k�min�p ,q�, and �i=1
p bi=�i=1

q ci. Let Spec �G�
= ��max�G� ,… ,�min�G� ,0� be the sequence of eigenvalues of
L�G� in nonincreasing order. By a result of Grone and Merris
�14�, Spec �G�H� majorizes Spec �G+H� for any coales-
cence G�H of G and H. By majorization the result is
proved. �

Applying Proposition 3 to the graphs in Fig. 3, we can
immediately see without any calculations that the star S5 on 5
vertices cannot be a better synchronizer than the linear chain
P3. Indeed, the ratio �min/�max is 1 /5 for S5 and 1/3 for P3.
Similarly, shorter chains will synchronize better than longer
ones, since the latter can be viewed as a coalescence of the
former. Similar conclusions can be drawn for the other
graphs by visual inspection. The numerical calculations in
Sec. III confirm that the coalescence operation yields re-
duced synchronizability, often by an order of magnitude.

D. Adding and removing edges

If G= �V ,E� is a graph, then G−e denotes the graph ob-
tained from G by removing the edge e�E�G�. If e�E�G�,
then G+e is the graph obtained from G by adding an edge e.
In general, the precise effect on the spectrum of adding or
deleting edges is still poorly understood. One well-known
fact is �12�

�i�G + e� � �i�G�, 1 � i � n .

In particular, �min�G+e���min�G�, so when edges are added
�respectively, deleted�, the synchronizability of the system
�1� either increases �respectively, decreases� or stays the
same. On the other hand, it is not easy to say what will
happen to the ratio �min/�max, so a similar conclusion cannot
be drawn for the coupled map lattice �3�. The computations
in Sec. III verify that, for a fixed number of vertices, �min is
nondecreasing as the number of edges is increased. However,
there are cases where �min/�max can strictly decrease with
increasing edge number. We study such a case in more detail
in the next section, where we consider the arbitrary connec-
tion of two networks.

E. Connecting two networks

We now consider connecting two separate networks by
adding links between them. The next result gives estimates
for the synchronizability of the resulting network.

Proposition 4: Let G1 ,G2 be two graphs on n1 and n2
vertices, respectively, and let H be the graph obtained by
adding k edges between G1 and G2. Then,

�min�H� �
2k

min�n1,n2�
, �14�

�min�H�
�max�H�

�
2k

davg�H�min�n1,n2�
. �15�

FIG. 3. All coalescences of a star with four vertices and the
cycle C4 �upper row�, and all coalescences of P3 and P3 �lower
row�.

FATIHCAN M. ATAY AND TÜRKER BIYIKOĞU PHYSICAL REVIEW E 72, 016217 �2005�

016217-4



Proof: The proof makes use of the notion of the isoperi-
metric number of a graph. For a subset X of V�G�, we define
the boundary �X as the set of edges e=xv such that x�X and
v�X. We let �S� denote the cardinality of a set S. The isope-
rimetric number of G is defined as i�G�=minX�V�G���X� / �X�,
where the minimum is taken over all subsets X of the vertex
set of G satisfying 1� �X�� �V�G�� /2. The quantities �min�G�
and i�G� are related by �15�

�min�G� � 2i�G� . �16�

Hence, for the graph H, we have

�min�H� � 2i�H� � 2
��X�
�X�

,

where X is any subset of V�H� satisfying 1� �X�� �V�G�� /2.
In particular, X can be chosen as the smaller of G1 and G2,
which yields �14�. Using �6�, we obtain �15�. �

Suppose now that two graphs G1 ,G2 are combined as in
the above proposition, and consider adding edges to G1 or G2
while keeping constant the number of connections k between
them. The effect is to increase the average degree davg�H� of
the combined graph and thus decrease the right-hand side of
�15�. Since �15� is only an upper bound, the net effect on
�min�H� /�max�H� cannot be determined for small values of
davg�H�. However, when davg�H� /k is made sufficiently large
by adding enough edges, then �15� implies that
�min�H� /�max�H� should be small. Therefore, adding more
links in a network may impede the synchronization, although

it decreases the average distance and the diameter. Figure 7
in the next section numerically confirms this observation.

III. NUMERICAL RESULTS

We now use numerical calculations to obtain more de-
tailed information on the effects of the graph operations pre-
sented in Sec. II. Our aim is to determine the behavior of
several common architectures, namely random, scale-free,
and small-world networks, in relation to the graph opera-
tions. Furthermore, we wish to explain the numerical obser-
vations using the foregoing theoretical considerations.

The calculations in this section are done on networks of
500 vertices and by averaging the results over several real-
izations. The random networks are constructed starting with
a fixed number of vertices and adding an edge between any
pair of vertices with probability p �16�. The scale-free net-
works are constructed using the Barabasi-Albert algorithm
for preferential attachment �17�, starting with m initial verti-
ces, and adding a vertex at each step with m links to existing
vertices with probability proportional to their vertex degrees.
For small-world networks we use the variant proposed in
Ref. �18�, which is obtained by randomly adding m links to a
cycle �a set of vertices connected to their nearest neighbors
in circular arrangement�. The results are summarized in Figs.
4–6. In each figure, the synchronizability of the graph G is
compared to that of the join G�G, the Cartesian product
G�P2, and the coalescence G�G. The graph G�G is con-
structed by taking two copies of G and coalescing a ran-
domly selected vertex from each copy.

FIG. 4. Synchronizability of random networks under graph op-
erations. The original graph G is shown with the solid line �—�,
while the other curves correspond to the join G�G�-� -�, the Carte-
sian product G�P2 �-�-�, and the coalescence G�G �-�-�.

FIG. 5. Synchronizability of scale-free networks under
graph operations. The curves correspond to G�—� ,G�G�-� -� ,
G�P2�-�-�, and G�G�-� -�.
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Some general features of the graph operations are appar-
ent from the Figs. 4–6. For instance, the join G�G typically
yields improved synchronizability compared to the original
network G, whereas the Cartesian product G�P2 results in
reduced synchronizability, and the coalescence G�G has the
worst synchronizability, as measured by �min or �min/�max.
An exception is the random graph where �min/�max for G�G
is about the same as �and can in fact be slightly less than� the
corresponding ratio for G when G itself is a sufficiently good
synchronizer. Note that this happens when �min�G� /�max�G�
becomes larger than 1/2, in agreement with �13�. As the
vertical scales in the figures are logarithmic, the synchroniz-
ability of the networks can often differ by several orders of
magnitude after the graph operations.

We now use the results of the preceding sections to give a
theoretical understanding of several interesting observations
from the figures. We first note that the value of �min for the
Cartesian product G�P2 saturates to 2 in the random and
scale-free networks of Figs. 4 and 5. This is a consequence
of �8� and the fact that �min�G� increases as more edges are
added to G �shown by the solid curve in the figures�. On the
other hand, for the small-world network of Fig. 6, the curve
�min�G�P2� coincides with �min�G�, in agreement with �8�
since �min�G� is less than 2 in this case.

With respect to the join operation, we have �min�G�G�
=500+�min�G�, as predicted by �9� and verified by the fig-
ures. In the scale-free and small-world networks �min�G�G�
appears almost as a horizontal line at the value 500 since
�min�G� is relatively small in these cases.

We also note that in most cases synchronizability in-
creases as edges are added �i.e., as p or m is increased�.
However, a notable exception occurs for the Cartesian prod-
uct G�P2 of random and scale-free networks. Here, over a
large interval the ratio �min/�max monotonically decreases for
G�P2, although it increases for G, as more edges are added.
In other words, the better the synchronizability of G, the
worse is the synchronizability of G�P2. This interesting
situation is most prominent in purely random networks �Fig.
4�, somewhat less conspicuous in scale-free networks �Fig.
5�, and absent in small-world networks �Fig. 6�. We use the
theory of Sec. II to give a quantitative account. Thus, by
Proposition 1, Eq. �8�, and the fact that �max�P2�=2, we have

�min�G�P2�
�max�G�P2�

=
2

2 + �max�G�
if �min�G� � 2.

As edges are added to G ,�max�G� will generally increase as
mentioned in Sec. II D, so �min/�max will decrease over the
range where �min�G��2. This latter inequality holds for the
random graph of Fig. 4 throughout the range of parameters
used, so �min/�max decreases monotonically, while the oppo-
site is true for the small-world network of Fig. 6. Further-
more, for the scale-free network of Fig. 5, �min/�max initially
increases, but begins to decrease at the point where �min�G�
reaches 2.

The phenomenon of decreased synchronizability with in-
creased connectivity can also be observed in the general cou-
pling of two networks. Indeed, if two copies of a graph G
having n vertices are connected by adding k links between
them, then for the resulting graph H we estimate

�min�H�
�max�H�

�
2k

ndavg�H�
�17�

using �15�. If k is small compared to the size of G, then
ndavg�H��ndavg�G�, i.e., about twice the number of edges of
G. Thus, the right-hand side of �17� can be viewed as the
ratio of the number of links between the two copies of G to
the number of links within G. By increasing the average
degree within G ,�min�H� /�max�H� can be made smaller. Fig-
ure 7 shows that �min/�max decreases for the combined graph
H while it increases for the individual graph G. By a straight-

FIG. 6. Synchronizability of small-world networks under
graph operations. The curves correspond to G�—� ,G�G�-� -� ,
G�P2�-�-�, and G�G�-� -�. In the upper figure, the solid line
corresponding to G is indistinguishable since �min�G� coincides
with �min�G�P2��.

FIG. 7. The lower solid curve is the ratio �min/�max for two
copies of a random graph G of 500 vertices connected to each other
by 20 links. The upper dotted curve gives the same ratio for the
single graph G.
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forward extension of this argument, a similar conclusion can
be drawn when two different graphs G1 and G2 are con-
nected by adding links between them.

IV. CONCLUSION

We have considered some common operations on graphs
and studied their effects on the synchronization of coupled
dynamical systems. For the Cartesian product and the join
operations, the eigenvalues of the Laplacian for the resulting
graph can be directly determined from those for the original
graphs, which gives a method for determining synchroniz-
ability without lengthy calculations. For the other operations
the eigenvalues can be estimated, providing useful insight
into the relation between synchronization and connection to-
pology. In simpler cases, the results allow one to determine
which network is a better synchronizer simply by visual in-
spection of its structure. Such heuristics should be useful in
design procedures.

We have illustrated our results numerically on random,
scale-free, and small-world networks, and used the theory to
explain several features observed in numerical calculations.
For instance, we have shown that adding links to a graph
may improve, saturate, or worsen its synchronizability, al-
though the average distance of the graph decreases. A related
observation is that, when two networks are combined by
adding links between them, the synchronizability of the re-
sulting network can worsen as that of the individual net-
works is improved. Using the theoretical results we are able
to explain and predict when such situations can arise.
Clearly, such analytical tools can help us better understand
the structure and dynamics of complex networks. For ex-
ample, it has recently been shown that the degree distribution
of a network generally does not determine its synchronizabil-
ity �19�, a significant fact which is difficult to establish on
the basis of numerical simulations alone. Several of the ideas
presented here can be extended to more general coupling
operators, such as weighted connection matrices. These re-
sults will be reported in a future work.

APPENDIX

The following is a short example illustrating the notation
and the relevant matrices for a simple graph, namely a linear
chain of three vertices, denoted by P3 and depicted in the
second row of Fig. 3. Labeling the vertices linearly in an
obvious way, the vertex degrees �number of neighbors of
each vertex� are 1, 2, and 1, which form the diagonal entries
of the matrix D=diag�1,2 ,1�. The neighborhood relation of
the graph is contained in the adjacency matrix

A = �0 1 0

1 0 1

0 1 0

 ,

and the Laplacian is given by

L = D − A = � 1 − 1 0

− 1 2 − 1

0 − 1 1

 .

The eigenvalues of L are 0, 1, and 3. Disregarding the trivial
eigenvalue, we have �min=1 and �max=3 in our notation.

Using the graph operations on P3, one obtains several
graphs whose synchronizability can be ranked by the ratio
�min/�max of their respective Laplacians. The Cartesian prod-
uct P3�P3 is a 3	3 rectangular grid with �min/�max=1/6,
so is a poorer synchronizer than P3. The join P3� P3 has
�min/�max=4/6, implying improved synchronizability over
P3. These values can be directly found from Propositions 1
and 2. All coalescences of P3� P3 are shown in the second
row of Fig. 3, and for these graphs the ratio �min/�max takes
the values 0.106, 0.124, and 0.2 �from left to right�, all show-
ing decreased synchronizability over P3. On the other hand,
adding an edge to P3 gives the cycle C3, depicted in the first
row of Fig. 1, which is a complete graph and has
�min/�max=3/3, the maximum possible value for any graph.
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